

Commissioning of ALPHA-g at CERN

WNPPC 2019

Adam Powell on behalf of the ALPHA collaboration Department of Physics & Astronomy University of Calgary

14.02.2019

ALPHA-g overview

- Antihydrogen is produced and confined in a magnetic well
- Magnetic fields are ramped down and antihydrogen is "dropped"

Aims:

- 1. Make an "up vs down" measurement of \mathcal{H} in free fall
- 2. Measure the gravitational mass of H to 1%

UNIVERSITY OF CALGARY

ALPHA

UNIVERSITY OF CALGARY

ALPHA-g

Challenges in measuring (anti)gravitational effects

- Neutral particle is required ($F \downarrow g / F \downarrow EM \sim 10 \uparrow 36$ for two protons $10 \uparrow 10$ m apart) producing antihydrogen is a complex process
- Gravitational potential difference of H < 1 Gauss over 40 cm—need magnetic field stability and uniformity within this limit
- Accurate measurements of magnetic fields in situ are difficult need to know to above limit

Commissioning timeline

UNIVERSITY OF CALGARY

May 22nd First components arrive June 28th
First trapping
of 2018
(in ALPHAII)

Sept. 26th First e⁺ around interconnect Nov. 1st Caught pbars in ALPHA-g

Shutdown

Technical Stop

June 24nd First e⁺ caught in ALPHA-II

> July 19th Interconnect arrives

Sept. 15th
First electrons
around interconnect

Oct 28th First pbars around interconnect

H trapping in ALPHA recap

- Cylindrical electrodes produce an E which can confine p and $e \uparrow +$ axially, solenoid provides radial trapping
- Plasmas manipulated to overlap and mix → H production
- H is neutral, can no longer be confined by Penning trap- need magnetic trap
- Trap depth is radially dependent ($B \propto r13$) use "thin" electrodes in H region

Design of the ALPHA-g trap

- 2 x 36 electrode stack (1-19 normal, 20-36 thin)
- Gold plated aluminium electrodes individually isolated by ruby beads
- Heat sunk to liquid Helium cryostat
- Flexible circuits connected to low and high pass filters
- "Mirror coils" (short solenoids) give axial confinement
- Octupole gives radial confinement

Assembly and insertion

Commissioning with p

Magnetometry in ALPHA-g

Hall probes, NMR probes used along rTPC and trap magnets

In situ:

 Electrons in a magnetic field have cyclotron motion at a resonant frequency

$$f \downarrow ECR = eB/2\pi m$$

- $f \downarrow ECR \sim 28 \ GHz$ for electrons \rightarrow microwaves
- Cyclotron frequency can be driven by a pulsed microwave field (over a frequency range), increasing the electrons temperature at resonance

Initial ECR data in ALPHA-g

Initial ECR data in ALPHA-g

UNIVERSITY OF CALGARY

Outlook

- Lower Penning-Malmberg trap in ALPHA-g is operational
- p and $e\hat{l}$ + trapped, manipulate and detected in ALPHA-g
- Initial magnetometry data obtained
- Make "up vs down" measurement soon after CERN long shutdown
- Working towards 1% measurement

Thank you to:

- TRIUMF & CERN
- UofC
- Everyone in ALPHA
- NSERC
- CFI
 - + AB, BC, ON match

