

Canada's national laboratory for particle and nuclear physics and accelerator-based science

Time-of-flight mass spectrometry for investigation of the N=32 neutron shell closure

Moritz Pascal Reiter for the TITAN Collaboration Postdoctoral Fellow

TRIUMF National Laboratory, Vancouver, Canada Justus-Liebig-Universität Gießen, II. Physikalisches Institut, Gießen, Germany GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

2019/02/15

The mass of an atomic nucleus reflects its binding energy and hence its stability and structure

Z Protons (Proton number) N Neutrons (Neutron number) A = N + Z (Mass number) B = Bindung energy

Nculear mass $M(N, Z) = Z \cdot m_p + N \cdot m_n - B(N, Z)/c^2$ Atomic mass $M_{at}(N, Z) = Z \cdot m_p + N \cdot m_p + Z \cdot m_{el} - B(N, Z)/c^2 - B_{el}(Z)/c^2$

- Structure of nuclei from mass measurements
 - Binding energies
 - Separation energies
 - Shell structure, pairing
 - Location of the driplines
 - Deformations
 - Halo / skin nuclei

 $\delta m/m \approx 10^{-6} - 10^{-7}$

Mass measurements around N = 32

 $1s - 1s_{1/2} 2 2$

Mass measurements around N = 32

Mass measurements around N = 32

RIUMF

 Mass measurements at the onset of the N = 32 shell closure

 Mass measurements at the onset of the N = 32 shell closure

 Mass measurements at the onset of the N = 32 shell closure

ISAC RIB Facility

TITAN at ISAC

TITAN

Measurement Penning Trap

 $2\pi v_{c} = (qe/m) \cdot B$

- TOF-ICR technique
 - Fast measurement preparation
 Using Lorentz steerers (LEBIT-NSCL) R. Ringle IJMS 263 (2007) 38-44 VRF 1831558 [Hz]
 - \rightarrow Fast and robust measurements: T_{1/2} < 9 ms (¹¹Li)

Measurement Penning Trap

end cap

ring electrode

 $2\pi v_c = (qe/m) \cdot B$

• **TOF-ICR** technique

ions

Fast measurement preparation

Using Lorentz steerers (LEBIT-NSCL) R. Ringle IJMS 263 (2007) 38-44 V_{RF} - 1831558 [Hz]

- \rightarrow Fast and robust measurements: T_{1/2} < 9 ms (¹¹Li)
- → High precision technique $\ge 10^{-9}$

M. Brodeur et al., PRC 80 (2009) 044318, M. Brodeur et al., IJMS 20 (2012) 310, A. Chaudhuri et al., PRC 88 (2013) 054317

TITAN

RIUMF

Time-of-Flight Mass Separator

- Measurement of mass-to-charge ratio m / q by measurement of time-of-flight t $E = \frac{1}{2}mt$
 - All ions have the same kinetic energy

$$\begin{aligned} \mathcal{L} &= \frac{1}{2}mv^2 = qeU \\ &\Rightarrow \frac{m}{q} \propto t^2 \end{aligned}$$

RTRIUMF

Enables high performance

- Fast \rightarrow access to very short-lived ions (T_{1/2} ~ ms)
- Sensitive, broadband, non-scanning \rightarrow efficient, access to rare ions
- Mass resolving power and accuracy almost mass-independent

Conventional TOF-MS achieve medium mass resolving power only

H. Wollnik et al., Int. J. Mass Spectrom. Ion Processes 96 (1990) 267

RIUMF

Enables high performance

- Fast \rightarrow access to very short-lived ions (T_{1/2} ~ ms)
- Sensitive, broadband, non-scanning \rightarrow efficient, access to rare ions
- Mass resolving power and accuracy almost mass-independent

Conventional TOF-MS achieve medium mass resolving power only

RTRIUMF

Enables high performance

- Fast \rightarrow access to very short-lived ions (T_{1/2} ~ ms)
- Sensitive, broadband, non-scanning \rightarrow efficient, access to rare ions
- Mass resolving power and accuracy almost mass-independent

Conventional TOF-MS achieve medium mass resolving power only

 \rightarrow Solution to achieve high mass resolving power and accuracy:

Multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS)

RIUMF

Multiple-Reflection Time-Of-Flight Mass Spectrometer

RTRIUMF

Multiple-Reflection Time-Of-Flight Mass Spectrometer

- Low energy transport system •
 - Gas filled RFQ
 - Beam re-capture and cooling
 - RFQ Switchyard
 - Merging of calibrations ions
 - Redirection of cleaned ions

RTRIUMF

Multiple-Reflection Time-Of-Flight Mass Spectrometer

Mass analyzer

•

Two gridless, electrostatic ion mirrors

27

Multiple-Reflection Time-Of-Flight Mass Spectrometer

Characteristics

- Resolving power up to 250k
 - Highly contaminated beams
- Precisions ~ $3*10^{-7}$
 - Nuclear structure & astrophysics
- High sensitivity (low rates)
- High background capabilities
 - Signal to background of 1 to 10⁴

RIUMF

- Make use of MR-TOF-MS for:
 - Identify beam composition
 - 512 turns inside mass analyzer (~7.4 ms time of flight)
 - → Resolving power \ge 200.000

RIUMF

- Make use of MR-TOF-MS for:
 - Laser On/OFF validation of the time-of-flight identification

• Comparison between MPET and MR-TOF-MS

- Shell Signature for N = 32
 - Resolved with new high precision measurements

E. Leistenschneider et al., PRL 120 (2018) 062503 M.P. Reiter et al., PRC 98 (2018) 024310

Neutron Number

- Shell Signature for N = 32
 - Resolved with new high precision measurements

E. Leistenschneider et al., PRL 120 (2018) 062503 M.P. Reiter et al., PRC 98 (2018) 024310

Neutron Number

- Shell Signature for N = 32
 - Resolved with new high precision measurements

E. Leistenschneider et al., PRL 120 (2018) 062503 M.P. Reiter et al., PRC 98 (2018) 024310

Neutron Number

• Test of ab-initio theories

• Local trends around N = 32

$$\Delta_{2n}(N,Z) = S_{2n}(N,Z) - S_{2n}(N+2,Z)$$

36

TRIUMF

- Shell Signature for N = 32
 - from high precision mass measurements
 MPET and new MR-TOF-MS

- V \rightarrow no shell effects
 - Ti \rightarrow weak shell effects
 - Sc \rightarrow upcoming shell closure
 - Ca \rightarrow full shell closure
- Ab-initio theories over predict the extend of the N = 32 shell closure

Canada's national laboratory for particle and nuclear physics and accelerator-based science

TITAN Collaboration

Thank you! Merci!

