∂TRIUMF

Approaching the N = 20 Island of Inversion

Andrew Jacobs TITAN/University of British Columbia

Discovery, accelerated

1

19-02-21

The Island of Inversion

P. A. Butler et. al. 2017 J. Phys. G: Nucl. Part. Phys. 44 044012

The N = 20 Shell Closure

- Kink at N = 20 indicates shell closure
- Shift occurs for AI indicating the upper limit of the Island of Inversion
- Still need more accurate Ne measurements for lower limit

$$S_{2n}(Z, N) = M(Z, N-2) + 2m_n - M(Z, N)$$

The N = 20 Shell Closure

 Kink at N = 20 indicates shell closure 4

- Shift occurs for Al indicating the upper limit of the Island of Inversion
- Still need more accurate Ne measurements for lower limit

$$S_{2n}(Z, N) = M(Z, N-2) + 2m_n - M(Z, N)$$

The N = 20 Shell Closure

- Kink at N = 20 indicates shell closure
- Shift occurs for AI indicating the upper limit of the Island of Inversion
- Still need more accurate Ne measurements for lower limit

$$S_{2n}(Z, N) = M(Z, N-2) + 2m_n - M(Z, N)$$

Previous TITAN Exploration of the Island of Inversion

A. Chaudhuri, C. Andreoiu, T. Brunner, U. Chowdhury, S. Ettenauer, A.T. Gallant, G. Gwinner, A.A. Kwiatkowski, A. Lennarz, D. Lunney, T.D. Macdonald, B.E. Schultz, M.C. Simon, V.V. Simon, J. Dilling, Phys. Rev. C 88 (2013) 054317.

New Challenges with Neon

- Forced electron beam induced arc discharge (FEBIAD) ion source is the only option for Ne
- Very high background contamination obscuring ion of interest
- Need a technique for cleaning the beam

Review of Mass Measurements with MR-ToF

- Mass Measurement mode:
 - lons ejected from Injection Trap
 - Fly in the Time of Flight Analyzer
 - Hit MagneToF Detector after opening of Ion mirror 2

C. Jesch et al., Hyperfine Interact. 235 (2015) 97

Introduction to Re-Trapping

- Re-Trapping Mode:
 - Inject and fly in Time of Flight Analyzer
 - Open Ion mirror 1
 - Close trap when ion of interest is inside
 - Re-inject purified beam in mass measurement mode

C. Jesch et al., Hyperfine Interact. 235 (2015) 97

Re-Trapping in Action

- Take initial spectra to identify desired window
- Set window to capture Ne
- However, still need a calibrant in the spectrum

Re-Trapping in Action

- Take initial spectra to identify desired window
- Set window to capture Ne
- However, still need a calibrant in the spectrum

Re-Trapping in Action

- Mg⁺ suppressed ≈ 10⁴
- C_2^+ suppressed $\approx 10^1$
 - Still plenty of counts for calibration

Preliminary Results

Is Re-Trapping Enough?

- Re-trapping window cannot single out ion of interest
- For heavier Ne beams, 10⁴ suppression will not be enough

Ranković, Miloš. (2016). Photon and electron action spectroscopy of trapped biomolecular ions - From isolated to nanosolvated species. 10.13140/RG.2.2.20901.91365.

CID Off

Summary and Outlook

²⁷ Si	²⁸ Si	²⁹ Si	³⁰ Si	³¹ Si	³² Si	³³ Si	³⁴ Si	³⁵ Si	³⁶ Si	³⁷ Si
²⁶ AI	²⁷ AI	²⁸ AI	²⁹ AI	³⁰ AI	³¹ AI	³² AI	³³ AI	³⁴ AI	³⁵ AI	³⁶ AI
²⁵ Mg	²⁶ Mg	²⁷ Mg	²⁸ Mg	²⁹ Mg	³⁰Mg	³¹ Mg	³² Mg	³³ Mg	³⁴ Mg	³⁵ Mg
²⁴ Na	²⁵ Na	²⁶ Na	²⁷ Na	²⁸ Na	²⁹ Na	³⁰ Na	³¹ Na	³² Na	³³ Na	³⁴ Na
²³ Ne	²⁴ Ne	²⁵ Ne	²⁶ Ne	²⁷ Ne	²⁸ Ne	²⁹ Ne	³⁰ Ne	³¹ Ne	³² Ne	[#] ³³ Ne
²² F	²³ F	²⁴ F	²⁵ F	²⁶ F	²⁷ F	²⁸ F	²⁹ F	³⁰ F	³¹ F	

- High precision mass measurements of ²⁴⁻²⁶Ne agrees with literature
- MR-ToF's beam purification has been improved with suppressions of:
 - Re-Trapping: 10⁴
 - CID: 10¹
- These tools allow us to reach Ne isotopes in the Island of Inversion

∂TRIUMF

Thank you Merci

www.triumf.ca

Follow us @TRIUMFLab

