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Neutron ED

* EDM describes the torque a particle
experiences due to an external electric field

 |n an external E and B field, the Hamiltonian is:
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H=—u, B—d,-FE

* The vector dipole moment and the axial vector
magnetic moment transform differently under
various symmetries
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Measuring the nE

* Rather than reverse time in the lab, we can have the
electric and magnetic fields be either parallel or anti-

parallel

* Anon-zero EDM results in a change in precession
frequency

B, coils

Electrode




B, homog
* For a measurable Aw, neutrons must precess for a long time

- B, field can drift

* Another atomic species in the same volume can measure the
magnetic field the entire time, correcting for drift
B+ A
False EDM signal*
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¢ Co-magnetometer
species, thermal

In terms of the scalar potential:
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ency shifts for particles in traps, Phys. Rev. A85 (2012) 042105.




Correcting dFal

* My goal: accurately characterize dFalse, a large
correction to our measured nEDM

— Place magnetometers
Inside the volume

* Infer field inside cell by
measuring field outside



Field decompos

* In free space, magnetic scalar potential obeys Laplace’s
equation:

V2h = 0
e General solution:

¢ = Z (A '+ By~ [C cos mo+D sin mo|[EP™(cos 0)+FQT (cos 6)]

[,m

* A convenient choice that satisfies this solution Is a re-
normalization of the real spherical harmonics?:

D, = Cl,m((ﬁ)rl}’llml(cos 0)
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Field decompos

xi,lm

* To arbitrary order, then

. I—H
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These gradient
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Field decomposit

« Our B, field oriented along the z axis

{ Y1 zZ1 xq
Yr Zn T

LBz(wn,:yn,sz LX ;
« B field independent of some G terms
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* Order of expansion = order of polynomial terms
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* False EDM is written in terms of the gradients, so we need

to extract g:

—

g =pinv(X.) * B.
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False EDM

* False EDM calculated from the gradient terms?:

firy? 2 R? H?> R? H* 5R’°H? b5R*
df’Hg:—z—zg(-TBm‘l’yBy>:—;cg {9’10+930( 1 2)+9’50(16 T T 19 + 16 )]

* This Is the quantity | want to accurately extract
for any given magnetic field
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Position

* Working equation must be adequately
constrained — e.g. can’t have all sensors on
equi-magnetic surface

* There must be some set of positions that
performs the best, but a 3" order fit requires
16*3 = 48 position parameters / /
to optimize 0- -

e Solution - have a computer
decide for me S

» A genetic algorithm can do this V
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Using a GA
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dFalse fitted

Optimization re

* Testing 10,000 gradients:
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dFalse generated

10725

Field sensing error: 10 fT
Position error: 0.1 cm
# sensors: 17(+1)

Below you can see the error is
always smaller than 3*e-28!
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Error in dFalse

12



Atomic magnetc

* Certain polarization states of alkali atoms behave very
predictably in magnetic fields, atomic (or optlcal) magnetometry
exploits this -

* Measures laser polarization
rotation in response to B fields

Left: figure taken from
Optical Magnetometry
by Budker & Kimball

* Moushumi Das demonstrated a =] e
working Rb based e /{'/_f;f-_fqi":e:r_-Om]-lr::::l
. . . A2
magnetometer with a statistical ' F'N;FL&* . i
sensitivity of 0.1 pT over 10 S R
. Probe S~ )
seconds, setup diagram to the WU
. beamsplitter 1 Pump e -.A9M '._;M:: ----- 6 ------ = /
rlght Il Lens %,E_\I Lens
Dump
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Conclus

dFalse is the dominant source of systematic uncertainty in
the experiment. By placing Cs magnetometers in the
experimental volume we can theoretically characterize this
false signal to a precision of order 1*e-28 e-cm

* Future work: in order to operate these magnetometers in
the experimental volume, the laser light will be provided
via fibre optic cables, prelim. design below

ibre coupters
= 5mm /

[ibres

- A A preliminary design for the mag-

heads. They need to be made
with zero metal, to avoid
contaminating the magnetic field in
the volume. This makes precision
Y alignment difficult.

~20 mm

~60 mm
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