Update on the KDK (Potassium Decay) Experiment

Presented by: Matthew Stukel, Queen's University on behalf of the KDK collaboration For the WNPPC 2019 Conference 2019/02/15

KDK Collaboration

N. Brewer^[1], P. Di Stefano^[2], A. Fijalkowska^{[1][5][6]}, Z. Gai^[1], C. Goetz^[3], R. Grzywacz^[3], J. Kostensalo^[7], P. Lechner^[8], Y. Liu^[1], E. Lukosi^[3], M. Mancuso^[9], D. McKinnon^[3], C. Melcher^[3], J. Ninkovic^[8], F. Petricca^[9], C. Rasco^[1], K. Rykaczewski^[1], D. Stracener^[1], J. Suhonen^[7], M. Wolińska-Cichocka ^{[1][4][6]}, Itay Yavin

¹Oak Ridge National Lab (ORNL), ²Queen's University, ³University of Tennessee, ⁴Heavy Ion Laboratory UW, Warsaw, ⁵University of Warsaw, ⁶Joint Institute for Nuclear Physics and Applications, ⁷University of Jyvaskyla, ⁸ MPG Semiconductor Laboratory, Munich, ⁹Max Planck Institute for Physics, Munich

Technical and Electronic Support from M. Constable, F. Retiere (TRIUMF), K. Dering (Queen's University), Paul Davis, University of Alberta

Overview

1.What is KDK?2.KDK Experiment3.KDK Results (Prelim.)

What is KDK?

- Pun for "Potassium Decay"
- KDK is an international collaboration dedicated to the measurement of the unique-third forbidden electron capture decay of ⁴⁰K

Why ⁴⁰K?

- Rare example of a <u>unique-third forbidden</u> electron capture decay
- <u>Never been experimentally measured</u>
- ⁴⁰K (0.0117%) can be found in natural potassium which is a contaminant in Nal
- ⁴⁰K is a <u>background in many dark matter</u> <u>experiments</u> (DAMA, SABRE, COSINE-100,etc..)
- Increase accuracy in <u>K-Ar (Ar-Ar) dating</u>
- Important Decay Channels:
 - 10.55 % to Ar-40* through electron capture, <u>EC*</u>
 - 0.2 % to Ar-40 through electron capture, <u>EC</u>
 - β- is the dominant decay channel

The different branching ratios of
40
K (EC)Accepted LOGFT ValueIndirect Experimental Half-Life Value $BR_{EC} = 0.2(1)\%$ $BR_{EC} = 0.8(8)\%$ Recent NNDC Value (2017)KDK Collaborator Value $BR_{EC} = 0.046(6)\%$ $BR_{EC} = 0.064(19)\%$

KDK Experiment

- Perform a dedicated measurement of the BR of K-40 EC decay into ground state
- A small, inner detector will trigger on the X-rays from ⁴⁰K

- Use an enriched (10%) ⁴⁰K source
- The internal detector will be surrounded by an larger detector in order to tag the 1460 keV gammas
- This will allow us to separate the events caused by the EC* decay from the direct EC

$$\frac{BR_{EC*}}{BR_{EC}} = \kappa$$

MTAS - External Detector

- The proposed external detector is the Modular Total Absorption Spectrometer (MTAS) from Oak Ridge National Lab (ORNL)
- The MTAS detector consists of 19 NaI(TI) hexagonal shaped detectors (53cm x 20cm) weighing in at ~54 kg each
- MTAS can provide a ~98-99% (SNR=1) efficiency on tagging the 1460 keV gammas and ~4 π coverage
- A high efficiency is needed to avoid false positives from the EC* channel and other background sources

[2] Wolińska-Cichocka, M., et al. "Modular Total Absorption Spectrometer at the HRIBF (ORNL, Oak Ridge)." Nuclear Data Sheets 120 (2014): 22-25.

SDD - Internal Detector

- SDD: Silicon Drift Detector
- Large n-type silicon wafer, small n⁺ anode and planar p⁺ cathode
- Rings (p⁺) surround the anode, creating a potential that guides the electron clouds to the anode
- SDD is cooled to -30°C
- Advantage is the lower electrical noise than the planar anode counterpart
- ~100 mm² active area

⁴⁰K Source Development

- ELECTRON BEAM DEPOSITION
- The electron beam is created by heating up a tungsten filament
- The released electrons are focused towards the tantalum crucible where 3.0 mg of enriched (16% ⁴⁰K) KCl is placed
- The heat causes the KCl to evaporate and deposit in the graphite disk placed above

KDK Experimental Setup

SDD Energy Calibration

 SDD was calibrated using 4 different sources

- ⁶⁵Zn (0.9, 8.0 and 8.9 keV)
- ⁸⁸Y (1.8, 14.1 keV)
- ⁵⁴Mn (5.4, 5.9 keV)
- ⁴⁰K (2.9, 3.2 keV)
- Calibration was very linear
- Energy Threshold: ~250 eV
- Energy Limit: ~15 keV

• FWHM: ~170 eV @ 6keV

Data Analysis: ⁵⁴Mn

- ⁵⁴Mn source used to find our gamma tagging efficiency at 845 keV
- ⁵⁵Fe contamination due to source construction
- Efficiency: ~0.98 (For 1 us, coincidence window)

⁴⁰K Measurement

- All ⁴⁰K data was taken during the December 2017 campaign, ⁴⁰K visible in MTAS/SDD setup!
- Total Run Time: 43 days, Total Useable Time: 33 days, (due to power failure), Data is blinded
- Silicon Escape Peak (~1.2 keV), Cl fluorescence (~2.9 keV)

Extra Physics

- ⁸⁸Y has a unique third forbidden decay as well. Has never been experimentally measured (barely even theoretically predicted)
- Use of the KSr₂I₅ scintillator
- ^{110m}Ag: For reactor neutron flux measurements

Summary

- KDK is an experiment dedicated to the measurement of a rare decay of ⁴⁰K
- Uses a large outer detector MTAS and a small inner detector, SDD
- 33 days of data has been taken with a custom ⁴⁰K source
- Data analysis is ongoing with results expected to be published soon!!!

Acknowledgment

KDK Collaboration

N. Brewer^[1], P. Di Stefano^[2], A. Fijalkowska^{[1][5][6]}, Z. Gai^[1], C. Goetz^[3], R. Grzywacz^[3], J. Kostensalo^[7], P. Lechner^[8], Y. Liu^[1], E. Lukosi^[3], M. Mancuso^[9], D. McKinnon^[3], C. Melcher^[3], J. Ninkovic^[8], F. Petricca^[9], C. Rasco^[1], K. Rykaczewski^[1], D. Stracener^[1], J. Suhonen^[7], M. Wolińska-Cichocka ^{[1][4][6]}, Itay Yavin

[1] Oak Ridge National Lab (ORNL), Tennessee, USA

[2] Queen's University, Kingston, Ontario

[3] University of Tennessee, Knoxville, Tennessee

[4] Heavy Ion Laboratory UW, Warsaw, Poland

[5] University of Warsaw, Warsaw, Poland

[6] Joint Institute for Nuclear Physics and Applications

[7] University of Jyvaskyla, Jyvaskyla, Finland

[8] MPG Semiconductor Laboratory, Munich, Germany

[9] Max Planck Institute for Physics, Munich, Germany

Technical and Electronic Support from M. Constable, F. Retiere (TRIUMF), K. Dering (Queen's University), Paul Davis, University of Alberta

References

- Pradler, Josef, Balraj Singh, and Itay Yavin. "On an unverified nuclear decay and its role in the DAMA experiment." *Physics Letters B* 720.4-5 (2013): 399-404.
- 2) Wolińska-Cichocka, M., et al. "Modular Total Absorption Spectrometer at the HRIBF (ORNL, Oak Ridge)." *Nuclear Data Sheets* 120 (2014): 22-25.
- 3) Bernabei, R. et. al. "First model independent results from DAMA/LIBRAphase2". *arXiv preprint arXiv:1805.10486*. (2018)