
The Fine Structure Constant up to
Two-Loop Level

Reefat

Memorial University of Newfoundland

reefat@mun.ca

15th February



Overview

~ Motivation for two-loop calculations

~ Precision frontier

~ Running of the fine structure constant

~ One-loop result

~ Dispersion approach

~ Renormalization in dispersion representation

~ Results for two-loop (ongoing)

~ Conclusion



Motivation behind two-loop calculations

~ Standard Model of Particle Physics does not explain
everything.

~ Few examples :

◦ Fundamental symmetry
◦ Matter - Antimatter asymmetry
◦ Hierarchy problem
◦ Supersymmetry
◦ Dark Matter, Dark energy ...

~ We can explore in 3 different paths:

◦ The Energy Frontier
◦ The Cosmic Frontier
◦ The Precision Frontier

Our work is on Precision Frontier



Precision frontier

~ It provides an alternative approach to probe physics beyond
the Standard model.

~ Extremely rare processes with tiny deviation from existing
models can be explained.

~ General approach is to consider higher order Feynman
diagrams to give us a more precise theoretical predictions at
sub-percent level.

~ For instance, in scattering processes, the perturbation
expansion of the scattering matrix could leads us to
sub-percent level accuracy.

~ New virtual particles in the form of a mediator between
interactions can be modelled.



Running of the fine structure constant

~ Fine structure constant, α is very accurately determined at
zero momentum transfer.

~ QED vacuum polarization corrections result in a Q2

dependence of the effective fine-structure constant which is
usually parameterized as:

α(Q2) =
α(0)

1−∆α(Q2)

=
α(0)

1− Π̂(Q2)

where Π̂(Q2) = Π(Q2)− Π(0) is the renormalized vacuum
polarization function.

~ The number on right hand side of the equation not only
depends on the the tree level interaction but also on other
particles that could appear as virtual particles in the one-loop,
two-loop and so on.



Feynman diagrams: one-loop
With the help of FeynArts we have generated all one-loop
Feynman diagrams:

Figure: One-loop Feynman diagrams

Apart from the differences in mass of the quarks and leptons, there
is only one type of topology.



Self-energy: one-loop
~ As an example, I chose the following topology:

Figure: One-loop self energy diagram

~ The general structure of the amplitude of this topology is:

Π̂µν(k21 ) = i

(
gµν −

k1µk1ν
k21

)
k21 Π̂(k21 )

where Π̂(k21 ) is the renormalized vacuum polarization function
is given Π̂(k21 ) = Π(k21 )− Π(0) which gives

α(k21 ) =
α(0)

1− Π̂1L(k21 )



Running of the fine structure constant up to one-loop level

~ I have used FormCalc and LoopTools to get the numerical
result.

~ Effective quark mass is chosen for this calculation.

~ The table shows the corrections at one loop level

Figure: Table showing the difference in effective fine structure
constant and its correction at one-loop correction



Running of the fine structure constant upto one-loop level

Figure: Running of the fine structure constant up to one-loop



Feynman diagrams: two-loop

With the help of FeynArts we generated the two-loop diagrams:

Apart from the difference in masses, there are only two types of
topology here.



Self-energy: two-loop
~ One-loop level calculation can easily be done using computer

packages like FeynArts, FormCalc, etc.
~ Our main focus is on two-loop self- energy diagram.
~ As an example we chose the following topology:

Figure: Two-loop level self-energy diagram



Amplitude of the two-loop self-energy

~ The amplitude of this diagram has the following structure:

Πµν =

(
gµν −

k1µk1ν
k21

)
k21Π(k21 )

=

∫
d4q1d

4q2

× Dµν

(q21 −m2
l )(q22 −m2

l )
(
(q1 − k1)2 −m2

l

)
× 1(

(q1 − k1)2 −m2
l

)
(q2 + k1 − q1)2

where

Dµν =Tr
[
(ml + /k1 − /q1)(ieγν)(ml + /q1)

]
× Tr

[
(ieγµ)(ml + /q1 − /k1)(ieγσ)(ml + /q2)(ieγρ)

]
× gρσ



Amplitude of the two-loop self-energy

~ Our aim is to evaluate this amplitude and see two-loop
contribution in

α(k21 ) =
α(0)

1−
(

Π̂1L(k21 ) + Π̂2L(k21 )
)

~ Because of different mass propagators and higher order
tensors, it is sometimes impossible to find analytical results for
this kind of two loop topology which leads us to use different
numerical methods.

~ We chose to use the Dispersion approach.

~ In dispersion approach, a sub-loop can be represented through
a dispersion tensor integral operator with a simple
propagator-like structure and the dispersion tensor integral
can be absorbed into the effective Feynman propagators in the
second loop integral.



Dispersion approach
~ In short, any sub-loop insertion of the form:

Figure: General topologies with sub-loop

can be reduced using the Dispersion technique.
~ So, we will be dealing with reduced topologies of the form:

Figure: Reduced topologies with no sub-loop

~ Consequently, we will have a simpler analytical structure and
calculations will be much faster.



Dispersion approach

~ A general topology like this:

Figure: A general self-energy topology

with two-point tensor coefficient functions (in
Passarino-Veltman basis) can be replaced as follows:

Bi ,ij ,ijk(q2,m2
α,m

2
β) =

1

π

∫ ∞

(mα+mβ)2
ds

I[Bi ,ij ,ijk(s2,m2
α,m

2
β)]

s − q2 − iε

with a dispersion tensor.



Our approach

~ To use the dispersion we have to first evaluate the insertion as
shown below:

Figure: Two-loop level self-energy diagram

~ The insertion will then be replaced and which will simplify the
amplitude as:∫

d4q1ds
Dµν

(q21 −m2
l )
(
(q1 − k1)2 −m2

l

) 1

(s − (q1 − k1)2 − iε)

~ One of the propagator, (q1 − k1)2 −m2
l gets cancelled with

the numerator of the dispersion tensor.

~ Effectively leaving us with three propagators only.



Renormalization of self-energy in QED

In general a fermion self-energy graph with a amplitude structure

Σ̂(/k) = /kΣ̂V (k2) + Σ̂S(k2)

is renormalized as follows:

Σ̂V (k2) = ΣV (k2)− ΣV (m2)− 2m2
(
Σ′
V (m2) + Σ′

S(m2)
)

Σ̂S(k2) = mΣS(k2)−mΣV (m2) + 2m3
(
Σ′
V (m2) + Σ′

S(m2)
)

where Σ̂V and Σ̂S are the renormalized amplitude and

Σ′
V =

∂ΣV

∂k2
|k2=m2

Σ′
S =

∂ΣS

∂k2
|k2=m2

The last part of these equations are the UV-Finite part of the
renormalized amplitude.



Renormalization in dispersion approach

Similarly, in the dispersive representation of the amplitude we get
the following renormalized amplitude:

Σ̂V (k2) =
k2 −m2

π

∫ ∞

m2

ds
Im (ΣV (s))

(s − k2)(s −m2)
− 2m2F

Σ̂S(k2) =
m(k2 −m2)

π

∫ ∞

m2

ds
Im (ΣS(s))

(s − k2)(s −m2)
+ 2m3F

where

F =

∫ ∞

m2

Im (ΣV (s) + ΣS(s))

(s −m2)2

F are convergent integrals and are constants.



Renormalization in dispersion approach

~ Next we evaluate the renormalized vacuum polarization tensor

Π̂µν = Π̂2L = Π(q2)− Π(0)

we can use the relationship

α(k21 ) =
α(0)

1−
(

Π̂1L(k21 ) + Π̂2L(k21 )
)

to evaluate the running of the fine structure constant.

~ So far, I have only done one graph at two-loop level, as an
example.



Resuts

~ In my example, I chose the following graph:

Figure: Two-loop level self-energy diagram

~ I have calculated the UV-Finite part seperately for this and it
has no contribution.

~ All the contribution is from the part which was represented by
Dispersion tensor.



Resuts

The table shows the corrections at two loop level with only one
graph of electron considered.

Figure: Table showing the difference in effective fine structure constant
and its correction at two-loop correction (only electron graph)



Conclusion

~ Currently I am only considering Quantum Electrodynamics
(QED) but this can be extended to cover Electroweak sectors
and will help us to evaluate running of the Weinberg mixing
angle upto two-loop level.

~ The dispersion representation also works for triangle and box
topology which will be my next calculation.

~ In future I will try to develop an extension for the FormCalc
that will be able to do all the manual insertions of the
dispersion integral automatically.

~ In addition, I will extensively use the dispersion approach to
reduce the current calculation time of existing computer
packages.
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