# CURRENT STATE OF THE ATLAS NEW SMALL WHEEL SIMULATION SYSTEM

Alexandre Laurier Carleton University WNPPC, February 2019

## Outline

- The ATLAS experiment
- The New Small Wheel (NSW)
- ATLAS Simulation system
- Simulation of the NSW



## The ATLAS experiment

- One of four experiments situated in the Large Hadron Collider (LHC).
- LHC is undergoing extensive upgrade program, lasting over a decade!
- The upgrade will bring a <u>seven-fold</u> increase in designed instantaneous luminosity.
- One of the costs associated with increasing the luminosity is requiring new and better detectors!
- In order to benefit from the upgrade, replace the *Small Wheel* by the *New Small Wheel (NSW)*.



Mural of ATLAS on the ATLAS building at CERN

#### LHC Upgrade Plan

• Currently in a shut down phase: LS2.

LHC / HL-LHC Plan

 One of the major upgrades to ATLAS during <u>this</u> shut down, is <u>replacing</u> the <u>small wheel</u> which was designed for nominal luminosity.

> High Luminosity

LHC



#### ATLAS – Replacing the Small Wheels



#### Increased luminosity of the LHC



Proton bunches >10<sup>11</sup> protons/bunch colliding at 13 TeV and at ~40MHz in Run-2 collided at 7/8 TeV and at ~20MHz in Run-1

In 2018: Up to 60 p-p collisions / bunch crossing



• Too much data!

- It is already much worse in 2018!
- Rare and interesting events are buried under the noise!
- Need a better Trigger System!

#### The Goal of the New Small Wheel (NSW)

- Higher luminosity means more data and fake muons.
- A better Trigger System will discriminate against fake muons.



### The New Small Wheel

- Part of the Muon Spectrometer, i.e muon detector.
- Built of 2 technologies: MicroMegas (MM) and small-strip Thin Gap Chambers (sTGC).
- MM act as a tracking system.
- sTGCs are the Trigger system, with an angular resolution of 1mrad and a response time within 1µs.
- More precise, better and quicker Trigger detector than the Small Wheel.



### Going From an Event to Useful Data

- Simulate ATLAS in order to do physics analysis and MonteCarlo (MC) studies.
- Essentially, all the tools needed for <u>doing physics</u>!
- A good simulation shows that we understand well the detectors and the physics which we are studying.

#### **Simplified Detector Transverse View**



#### ATLAS Simulation for Sadists



#### The Real ATLAS Simulation



#### The Realistic NSW Simulation System



#### **NSW Detector Simulation**

- Have to create a faithful description of the detector's geometry.
- Properly model interactions between particles and materials!

![](_page_12_Picture_3.jpeg)

#### Zoomed in view of the NSW side A

#### NSW Digitization

- Digitization models the electronic response of the detector.
- Best way to validate is to compare to test beam and experimental data!

![](_page_13_Figure_3.jpeg)

### Trigger Simulation in the NSW

- The sTGCs act as the Trigger system.
- 8 layers of sTGCs surround 8 MM layers.
- Triggered when 2 x <sup>3</sup>/<sub>4</sub> layers read signal in the correct time frame.
- Trigger simulation uses direct output of Digitization!

![](_page_14_Figure_5.jpeg)

#### Testing the NSW Simulation

- When we generate particles, we can compare their reconstructed directions with their truth values.
- Look at the efficiency, the ratio of sTGC pad trigger candidates to truth for single muon events.

![](_page_15_Figure_3.jpeg)

#### Reconstruction: A Primer

- We reconstruct tracks left by particles.
- More points and smaller errors improve tracking drastically.

![](_page_16_Figure_3.jpeg)

• NSW reaches an efficiency of 98% on track reconstruction for simulated nominal conditions. A. Laurier

#### Summary

- LHC is undergoing an extensive upgrade program lasting over a decade and increasing design luminosity by a factor of 7.
- To benefit from the increased performance, ATLAS is installing the New Small Wheel (NSW), a muon detector which will reconstruct muon tracks with high precision as well as serve as a L1 Trigger.
- A new simulation system had to be put in place to fully account for the NSW.
- Using test beam data, the NSW software is well behaved and produces consistent results for trigger and tracking efficiencies.

#### Almost time to do muon physics with our new detector!

![](_page_18_Figure_1.jpeg)