Kaon L-T experiment at Jefferson Lab

Supervisor: Prof. Garth Huber

Scientific Motivation

• How does Quantum Chromodynamics (QCD) work in the confinement regime?

 How precisely does QCD predict hadronic structure?

 What are the form factors for strangeness mesons?

Inside Hadrons

Pion's structure is determined by two valence quarks, and the quark-gluon sea.

Mesons are valence quark-antiquark states

Baryons are valence quark-quark-quark states

Meson Form Factor

Form factor: Elastic electron hadron scattering, $eK \rightarrow e'K'$

Electromagnetic form factor can be calculated exactly at very large momentum transfer (small distances) with perturbative QCD

No "free" Pion and Kaon targets

Similar to π^+ form factor, elastic K⁺ scattering from electrons used to measure charged kaon form factor at low Q² [Amendolia, et al., PL **B178** (1986) 435]

Can "kaon cloud" of the of the proton be used in the same way as the pion to extract kaon form factor via $p(e, e' K^+)\Lambda$?

 $(\langle r_{\kappa}^2 \rangle)^{1/2} = 0.58 \pm 0.04 \text{ fm}$

System of Reactions

E01-004, Fл-2 $e^- + p \rightarrow e^{-} + \pi^+ + n$ 2003 E12-09-011, Kaon L-T $e^- + p \rightarrow e^{-} + K^+ + (\Lambda \text{ or } \Sigma^0)$ $\Lambda, \Sigma^0(uds)$ $M_{\Lambda} = 1115.68 MeV^2/c^{2}$ $M_{y_0}^{\Lambda} = 1192.64 MeV^2/c^2$ 19-02-21

Reaction and scattering planes

Jefferson Lab

Accelerator: Continuous Electron Beam Accelerator Facility (CEBAF) Two superconducting Linear Accelerators provide an intense high energy electron beam

Hall-C Instrumentation

Super High Momentum Spectrometer (SHMS) for Kaon detection

High Momentum Spectrometer (HMS) for Electron detection

Dipole is used to select particles of specific momentum range

Kaon angles between 5.5 – 40 deg Kaon momenta between 0.5 – 11 GeV/c

Angles between 10.5 – 90 deg Momenta between 0.5 – 7 GeV/c

High Momentum Spectrometer (HMS)

Inside Hall-C view

Super High Momentum Spectrometer (SHMS)

Inside Hall-C view

SHMS Focal Plane Detector System

$p(e,e'K^+)\Lambda,\Sigma^0$ Event Selection

 $Eb = 10.599 \ GeV, \ Q^2 = 3.0, W = 3.14, \epsilon = 0.6668$ **Electron selection in HMS** Normalized HMS Calorimeter Energy vs Cherenkov 30 CER NPE Ľ. 3500 3000 20 2500 2000 15 1500 10 1000 5 500 n 0.2 0.4 0.6 0.8 1.2 Normalized Energy

HMS with negative polarity and the central momentum = 4.204 GeV/c

$p(e,e' K^+) \Lambda, \Sigma^0$ Event Selection

 $Eb = 10.599 \ GeV, \ Q^2 = 3.0, W = 3.14, \epsilon = 0.6668$ Kaon selection in SHMS NPE in SHMS Aerogel and Heavy Gas HGC NPE Placed cut in Aerogel **Placed cut in HGC** Aerogel NPE

SHMS with positive polarity and the central momentum = 6.053 GeV/c

$p(e,e' K^+)\Lambda,\Sigma^0$ Event Selection

Kaon selection in SHMS $Eb = 10.599 \ GeV, \ Q^2 = 3.0, W = 3.14, \varepsilon = 0.6668$

Background subtraction

These data have real coincidence and random coincidence of Kaon in SHMS and electron in HMS

Background subtraction

 $Eb = 10.599 \ GeV, \ Q^2 = 3.0, W = 3.14, \varepsilon = 0.6668$

Missing mass reconstruction

 $Eb = 10.599 \ GeV, \ Q^2 = 3.0, W = 3.14, \epsilon = 0.6668$

$$M_{miss} = [(Eb + m_p - E_{e'} - E_{K+})^2 - (\vec{p}_{e'} - \vec{p}_{e'} - \vec{p}_{K+})^2]^{1/2}$$

19-02-21

Measuring $d\sigma_L/dt$

Physical cross-section

$$2\pi \frac{d\sigma}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$

Virtual-photon polarization:

$$\varepsilon = \left(1 + 2\frac{(E_e - E_{e'})^2 + Q^2}{Q^2} \tan^2 \frac{\Theta_{e'}}{2}\right)^2$$

We have to measure in non-parallel kinematics to access the interference terms (i.e. detected K⁺ not parallel to virtual photon momentum, LT and TT must also be determined).

Rosenbluth separation required to isolate σ_{I}

- Measure cross-section at fixed (W,Q²,-t) at two beam energies

- Simultaneous fit at two ε values to determine

 $\boldsymbol{\sigma}_{\!\scriptscriptstyle L}\,, \boldsymbol{\sigma}_{\!\scriptscriptstyle T}\,, and \,\, interference \,\, tems$

Kaon L-T Current Status

Setting	Low E data with beam energy (GeV)	High E data with beam energy(GeV)
$Q^2 = 0.50$	0.4515	0.6979
W = 2.40	E _b = 3.835	E _b = 4.933 Done
$Q^2 = 2.1$	0.3099	0.7864
W = 2.95	E _b = 6.430 No	E _b = 10.588 Done
$Q^2 = 3.0$	0.6108	0.8791
W = 2.32	E _b = 6.430 No	E _b = 10.588 Done
$Q^2 = 3.0$	0.4460	0.6668
W = 3.14	E _b = 8.534 No	E _b = 10.588 Done
$Q^2 = 4.4$	0.5259	0.7148
W = 2.74	E _b = 8.534 No	E _b = 10.588 Done
$Q^2 = 5.5$	0.2330	0.5291
W = 3.02	E _b = 8.534 No	E _b = 10.588 Done

Thank you

Summary and outlook

Want to measure the form factor

New experiment in progress

Data taking to be completed soon