

Carleton UNIVERSITY

Measurement of the EW production of Z+jets at $\sqrt{s} = 13$ TeV with the **ATLAS experiment**

S. Weber (Carleton)

Signal: Electroweak Z + dijets

- Drell-Yan Z+dijets is produced frequently in pp collisions compared to EW Z+dijets (Large Background!)
- VBF Z is a probe for new physics via higher order corrections to the WWZ vertex (the triple gauge coupling)

Z+dijets production

EW Zjj has a much smaller cross section compared to the strong Drell-Yan process

Extracting the EW signal from the dominant Drell-Yan background is challenging Modeling of the background is crucial

S. Weber (Carleton)

Z+dijets production

We exploit the **colour flow** difference of the production modes

- t-channel exchange of the DY production makes the quarks colour connected
- Final state will have more hadronic activity close to the Z boson

- Find 2 high p_{τ} jets initiated by the interacting quarks/gluons from the hard scatter
 - Look for additional jets in the "gap region" between the 2 leading jets

EW Z+dijets: What we see with the ATLAS detector

S. Weber (Carleton)

DY Z+dijets: What we see with the ATLAS detector

The Drell-Yan process is more likely to have additional hadronic activity between the two leading jets than the EW process. This is observed as so-called gap jets

S. Weber (Carleton)

Measurement: Cross section

- The Drell-Yan Z+dijets accounts for the vast majority of events
- Crucial to understand this process to extract the EW Z+dijets signal

Analysis overview

- Analyzed full Run II dataset: 2015-18 data (140 fb⁻¹)
- Measurements:
 - Inclusive Z+jets cross section (strong+EW) Ο

ြ<u>ို</u>ရ 160

ATLAS

LHC Delivered

ATLAS Recorded

Good for Physics

√s = 13 TeV Delivered: 158 fb⁻¹

Recorded: 149 fb⁻¹

Initial 2018 ca

Physics: 140 fb⁻¹

Analysis Selection

We apply cuts that enhance the **EW** signal

- 1. High mass of the **Dijet System**, m_{ii}
- 2. **Large gap** between the leading jets, Δy_{ii}
- 3. Balanced p_T

These 3 cuts define our **EW Z topology** phase space, we split this region further into **signal** and **control** regions to understand the **strong** background

Background modelling

- The dominant strong DY background is poorly modeled
- 2 different MC predictions: **Sherpa** and **Madgraph**
 - Predictions **don't agree** with each other or the data 10⁴
- Need to account for the mismodelling of the strong component if we hope to measure the EW component

How we account for the mismodelling

- 1. Divide phase space into regions that enhance EW and regions that enhance strong
- 2. Derive a **constraint from the data** in the **strong** enhanced regions
- 3. Apply the constraint to the **EW** enhanced regions

1. Divide phase space into regions

3. Apply constraint to the EW enhanced regions

S. Weber (Carleton)

After correcting the strong DY background the Data to MC agreement is improved

We can now extract the **EW** signal

Note: Data shown is simulated Asimov data, the analysis is blinded

Conclusions

- Full Run II dataset analyzed, 140 fb⁻¹
- Robust analysis model to extract EW signal from QCD background by applying data-driven constraint
- By measuring the differential EW cross section we can test the triple gauge coupling of the WWZ vertex and look for deviations from the SM

Thanks for listening, questions?