QUANTUM BLACK HOLE PRODUCTION AND DECAY TO THE DI-TOP FINAL STATE AT THE LHC WITH THE ATLAS DETECTOR

Sina Safarabadi Farahani

Supervisor: Douglas M. Gingrich*

Department of Physics University of Alberta

Also at TRIUMF, Vancouver, British Columbia

WNPPC, February 16, 2019

INTRODUCTION

- ✓ Quantum Black Holes (QBH) are interesting possibilities at the LHC under low-scale gravity models, such as the ADD model (also known as large extra dimensions).
- They could decay to the signature of ditop (any combination of top and anti-top) final states. We will present the discovery potential for this production and decay.
- ✓ We will use Monte Carlo (MC) simulations of signal and background.
 - The data from the dijet analysis is also used for normalizing MC background to data.

QUANTUM BLACK HOLE

- QBHs are assumed to be produced from particle collisions at energies close to the Planck Scale (10^{19} GeV)
- Models with Large Extra Dimensions (ADD or LED model), proposed to solve the hierarchy problem, can reduce the Planck scale (M_D) to order of few TeV
- Production of QBH at energies accessible on Earth becomes a possibility (like the LHC)
- The "QBH" generator simulates black hole production and decay

ASSUMPTIONS AND NOTES

- i. Validity of QBH (mass range):
 - $> M_{min} = M_D$: 4-9 TeV in 1 TeV steps, 9.5 and 10 TeV \rightarrow Threshold mass (M_{th})
 - $> M_{max}$ = min (center-of-mass energy, $3 \times M_{min}$) \rightarrow Maximum allowed mass
- *i i*. $M_{min} = M_D$ and M_{max} are our choice
- iii. Number of extra dimensions: n = 6
- iv. Only QBH decays to two-body particle final states are considered which is the most dominant state over all *n* (The QBH can decay to as many as 6 particles)
- v. The effects of a detector are not simulated, but their effects are included
- vi. An Integrated luminosity of $L = 150 \text{ fb}^{-1}$ is used
- vii. The anti- k_t jet algorithm with the R parameter of R = 0.4 is used

CROSS-SECTION × BRANCHING RATIO (QBH generator level)

Since the total cross-section almost overlaps with the $QBH_{4/3} \rightarrow t t$ state, this is the only state we will consider.

MASS DISTRIBUTION (QBH generator level)

Normalized to cross-section \times Luminosity

QBH DECAY

W-boson Decay modes: Hadronic: 68.3% Leptonic: 31.7%

 \sim 1/3 of leptonic decays are tau leptons which are not directly detected by a detector.

Tau lepton decays: Hadronic: 64.8% (τ_q) Leptonic: 35.2% (τ_l)

QBH DECAY MODES

- Fully-hadronic: 56.4% → Both W-bosons decay hadronically.
- Semi-hadronic: 37.2% -> One of the W-bosons decay hadronically and the other one leptonically.
- Leptonic: $6.4\% \rightarrow$ Both W-bosons decay leptonically.
- \checkmark We will be reconstructing the QBH state in the fully- and semi-hadronic topologies

 \checkmark leptonic decays are ignored for three main reasons:

- 1. Small fraction of the sample (less signal events)
- 2. Hard separation of leptonic decays from the other two
- 3. Not a well reconstructed mass (specially for having two high energy neutrinos produced)

DETECTOR EFFECTS

Although no detector simulation was performed, ATLAS detector effects are included (ATLAS results):

\div Detector acceptance for different objects (*e*, μ , jets)

✤Lepton (e, µ) efficiency (detection probability)

 $\clubsuit p_T$ resolution of leptons and jets

 $\mathbf{*} \mathbf{p}_{\mathrm{T}}$ scale of jets

p_T resolution of Missing Transverse Energy (MET)

> p_T resolution of MET is calculated from the p_T resolution of other objects (calculated by ourselves)

EVENT SELECTION

The cuts are applied in the order appeared in the table

For the 9 TeV sample: 77% of Hadronic events & 63% of Mixed events are reconstructed

71% of the whole sample with less than 5.0% fake events

Event type	Selection criteria
Leptonic	well separated leptons, $p_{T_{lepton_{1,2}}} > 350 \text{ GeV}$
Fully- hadronic	well separated jets, $p_{T_{\rm jet1,2}}>1$ TeV, $M_{jet_{1,2}}>100$ GeV, $\frac{p_{T_{\rm jet1}}}{p_{T_{\rm jet2}}}<1.25$
Semi- hadronic	$ \begin{array}{l} \mbox{well separated jets, } \frac{p_{T_{\rm jet1}}}{p_{T_{\rm jet2}}} > 1.25, p_{T_{\rm jet1}} > 1.2 \ {\rm TeV}, M_{jet1} > 120 \ {\rm GeV}, \\ \mbox{MET} > 150 \ {\rm GeV}, p_{T_{\rm lepton}} > 75 \ {\rm GeV} \end{array} $

Fake events \equiv misidentification of the decay modes

SELECTION ALGORITHM

• Hadronic: Each of the two highest p_T jets are considered the top quark candidates

• Mixed:

- \succ The highest p_T jet is considered as one of the top quark candidates
- > The other top quark is "reconstructed" from the W-boson ($W \rightarrow l \nu$) and the second highest p_T jet which is the b-quark candidate

BACKGROUND

- QCD dijet (PYTHIA8, HERWIG++)
- ttbar production (Powheg) (expected number of events ~10 events in the mass range 4-4.5 TeV with $L = 150 \text{ fb}^{-1}$)
- W/Z + jets (Powheg) (expected number of events ~0 events in the mass range above 3 TeV with $L = 150 \text{ fb}^{-1}$)
- ✓ QCD dijet is the dominant background and will neglect the other two

Background Uncertainties

- i. Statistical
- ii. Theory modeling (generator difference)
- iii. Detector effects

MASS DISTRIBUTION

Fully-hadronic

Semi-hadronic

MASS DISTRIBUTION

Fully- and semi-hadronic combined

DISCOVERY POTENTIAL

$$Z = \sqrt{2\left(\left(s+b\right)\ln\left[\frac{\left(s+b\right)\left(b+\sigma_{b}^{2}\right)}{b^{2}+\left(s+b\right)\sigma_{b}^{2}}\right] - \frac{b^{2}}{\sigma_{b}^{2}}\ln\left[1 + \frac{\sigma_{b}^{2}s}{b\left(b+\sigma_{b}^{2}\right)}\right]\right)}$$

s \equiv number of signal events only b \equiv number of background events only $\sigma_b \equiv$ total background uncertainty

MINIMUM REQUIRED LUMINOSITY

Conditions for discovery potential:

 \checkmark signal significance (Z) \ge 5 standard deviations

 \checkmark number of expected signal (s) ≥ 10

DISCOVERY POTENTIAL

Decay mode	M_{th} [TeV]		
Decay mode	$150 \ {\rm fb^{-1}}$	$3000 \ {\rm fb}^{-1}$	
Semi-hadronic	8.5	9.5	
(Electron)	0.0		
Semi-hadronic	8.5	9.5	
(Muon)	0.0		
Semi-hadronic	8.7	9.7	
Fully-hadronic	9.0	9.9	
Fully- and semi-hadronic	9.1	10.0	

Maximum detectable mass using L = 150, 3000 fb^{-1} for each decay mode

SUMMARY

We:

- Simulate QBH production for different mass thresholds
- Estimate the background contributions with corresponding uncertainties
- Reconstruct the QBH state in fully- and semi-hadronic topologies
- Estimate the discovery potential assuming an integrated luminosity of 150 ${
 m fb}^{-1}$

Thank You Very Much For Your Attention!