Searching for shape coexistence in 124Te

ERIN MCGEE, UNIVERSITY OF GUELPH

WNPPC 2019
Shell model predicts shell closure at “magic” numbers of protons and neutrons

^{124}Te:

- Stable
- $Z=52$
 - Near closed proton shell
- $N=72$
 - Mid-shell for neutrons
Shape coexistence

Can be characterized by absolute B(E2) values, but other indications exist:

- Parabolic energy dependence as a function of neutron number in intruder bands.
- Transition energy difference
Why 124Te?

- $Z=52$
- Shape coexistence already established in $Z=48$ and $Z=50$ nuclei
- Lifetimes of many states are well known
 - absolute $B(E2)$s can be calculated once branching ratios are measured.
$^{123}_{\text{Te}}(n,\text{gamma})$
Neutron capture

- Thermal neutrons come in at very low energies
- Neutrons captured in compound nucleus reaction
- Daughter nucleus will be in an excited state near or at its neutron separation energy
 - The calculated neutron separation energy for ^{124}Te is 9.43 MeV
Why neutron capture?

- In order to investigate shape coexistence, must populate $0^+ \textbf{intruder states}$

- It is difficult to make a nucleus with zero angular momentum

- Neutron has a spin angular momentum of $\frac{1}{2}$
 - If the target nucleus has a small angular momentum, low-spin states will be populated
123Te(n,\gamma)

- Target nucleus has a ground state spin of $+\frac{1}{2}$, so 0^+ states will be populated by neutron capture.

- Comparatively high neutron capture cross section (418.3 b).
 - 124Te has a thermal neutron capture cross section of 6.324 b.

- Long half life ($>9.2 \times 10^{16}$ years).
Scientific Research conducted at the ILL
FIPPS

8 CLOVERS EACH CONSISTING OF 4 HPGE DETECTORS

BEAM IS A HIGHLY COLLIMATED PENCIL NEUTRON BEAM
Data acquisition and sorting

- Detectors record the time and energy of gamma rays that hit them

- We set a timing window – for every gamma ray that hits the detector, any other hits registered within the time gate are considered “in coincidence” with it

- In Coincidence: occurring one after the other in a cascade

- From this we construct a symmetric matrix of gamma ray energies – “gating” on any gamma energy gives a histogram of counts vs energy that occur in coincidence with that gamma.
Preliminary results

Total projection of gamma-gamma coincidence matrix (logarithmic y-axis)

Total counts in projection: $\sim 14 \times 10^9$

This peak contains about 6×10^8 counts

Total counts in projection: $\sim 14 \times 10^9$
Preliminary results

Portion of a slice taken on the $1055 \, 0^+ \rightarrow 2^+$ transition
(linear y-axis)
Preliminary results

Portion of a slice taken on the $1055 \, 0^+ \rightarrow 2^+$ transition
(linear y-axis)
Preliminary results

Large discrepancy between ground state $2^+ \rightarrow 0^+$ transition and intruder $2^+ \rightarrow 0^+$ energy
Thank you!

Paul Garrett¹, Vinzenz Bildstein¹, Michelle Dunlop¹, Ryan Dunlop¹, Caterina Michelagnoli², Costel Petrache³, Corina Andreou⁴, Alain Astier³, Aurelien Blanc⁵, Isabelle Deloncle³, Etienne Dupont³, Sally Hicks⁶, James Keatings⁷, Ulli Koester², Radomira Lozeva³, Bingfeng Lv³, Konstantin Mashtakov⁷, Paolo Mutti², Jeffrey Vanhoy⁸, Steven Yates⁹

¹ University of Guelph ² Institut Laue-Langevin ³ CSNSM Orsay ⁴ SFU ⁵ CEA de Bruyères-le-Châtel ⁶ University of Dallas ⁷ University of the West of Scotland ⁸ USNA Annapolis ⁹ University of Kentucky