Dark matter search with DEAP-3600 at SNOLAB

Simon Viel Carleton University WNPPC February 17th, 2019

DEAP Collaboration:

80 researchers in Canada, Germany, Italy, Mexico, Russia, Spain, UK, USA

INNOVATION.CA

CANADA FOUNDATION FOR INNOVATION

FONDATION CANADIENNE POUR L'INNOVATION

CANADA FIRST RESEARCH EXCELLENCE

Instituto de Física

LEVERHULME TRUST

South East Physics Network

FONDS D'EXCELLENCE EN RECHERCHE

APOGÉE

compute | calcul canada canada

partners for making this research possible!

European Research Council

Established by the European Commission

Video: A Day at SNOLAB https://www.snolab.ca/outreach

2070 m underground

Acrylic vessel underground at SNOLAB

Acrylic vessel resurfacer: Mechanical sander to remove 0.5 mm off the inner surface

Bonding light guides underground at SNOLAB

PMT installation

Backing foam installation

Steel shell, Veto PMTs

All details available in the DEAP-3600 detector publication! arXiv:1712.01982

Dark matter Experiment using Argon Pulse-shape discrimination

Objective: select dark matter signal events, and reject background events

- Liquid argon is suitable for very large targets
 - Transparent to its own scintillation light
 - Easy to purify
 - Much lower cost compared to xenon
 - ... but there is ³⁹**Ar**: β decays with t_{1/2} = 269 years, around 1 Bq/kg in natural argon
- Solution: **Pulse-shape discrimination** (PSD)
 - Scintillation via two lowest excited states, with very different lifetimes
 - Singlet state: 6 ns ("prompt light")
 - Triplet state: **1.3 µs** ("late light")
 - Nuclear recoils excite predominantly the singlet state
 → signal events have more prompt light !

Visible photons \rightarrow Photoelectrons at PMT cathode \rightarrow PMT pulses

New Bayesian algorithm to remove instrumental PMT afterpulsing ("AP removal") results in improved PSD, energy reconstruction, and position reconstruction

Neutron source calibration data

World-leading PSD performance!

Nuclear recoil backgrounds: Neutrons

Signal-like events can be produced by **neutrons** wandering into the detector

Neutron events can cause multiple nuclear recoils in close succession, or result in gamma-ray emission \rightarrow **Reject** events observed with these properties

Nuclear recoil backgrounds: Alphas from detector surface

Signal-like events can be produced by alpha decays at the detector surface

Position reconstruction algorithms are able to reject these backgrounds effectively

High-energy events observed from the detector surface are well-explained by our model

More activity detected from the top and bottom of the detector: pre-emptively **reject** events with high fraction of total PE from top rows and bottom rows of PMTs Select events from the **innermost part** of the liquid argon vessel

Excellent performance of position reconstruction for rejecting simulated alpha decays from the detector surface

Nuclear recoil backgrounds: Alphas from detector neck

Signal-like events can be produced by alpha decays at the detector neck

These background events can be particularly **challenging**, because the scintillation light can be blocked

Dedicated event selection and **position reconstruction** are able to reject these backgrounds effectively

Nuclear recoil backgrounds: Alphas from detector neck

Signal region

After event selection, the result is ...

Was dark matter observed in the first year of DEAP-3600 data?

After event selection, the result is ...

The detector is sensitive to dark matter, but no signal event was observed!

Submitted for publication on Monday! arXiv:1902.04048

After event selection, the result is ...

The detector is sensitive to dark matter, but no signal event was observed!

Dark matter search results

The detector is sensitive to dark matter, but no signal event was observed! Therefore we **rule out** certain dark matter hypotheses

Conclusions and Outlook

- **Dark matter** is one of the most fundamental questions of our time
 - Has to exist in abundant quantities
 - Five times more dark matter, than ordinary matter!
 - Interacts so weakly with ordinary matter, that it has not been discovered yet
 - Looking for dark matter directly with the **DEAP-3600** experiment at **SNOLAB**
 - Found no dark matter signal event \rightarrow Excluded some parameter space
 - Leading sensitivity for argon detectors, complementary to xenon searches
 - Experiment is still taking data!
 - More and more sensitive to very rare events in the detector
- Instrumentation research and development for future particle detectors
 - Design and simulation for DarkSide-20k and ARGO
 - Silicon photomultipliers, with applications within and outside particle physics (e.g. medical physics: imaging devices, positron emission tomography, etc.)
- Can we discover dark matter? Let's find out!

