

The CUTE Facility

Ryan Underwood Queen's University, TRIUMF WNPPC 2019

Dark Matter

- Strong evidence for a nonluminous, gravitationally interacting kind of matter; "Dark Matter"
- Interaction with normal matter is very weak
- Look for signal from dark matter in terrestrial detectors

SuperCDMS

χ

- Super Cryogenic Dark Matter Search
- SuperCDMS uses cryogenic Ge/Si semiconductor detectors to search for dark matter interactions
- Interacting particles liberate charges and deposit energy in the lattice, which can be measured as phonons

- Main Challenges:
 - Low rate (need to minimize background)
 - Low energy (need low threshold detectors)
 - Long lived cosmogenic backgrounds (need to minimize detectors' time above ground)
 - 2 km underground at SNOLAB (to reduce cosmogenic background) 3

Si

4

5

100

100

8

6

9.6

SuperCDMS Detectors

- SuperCDMS has two main detector types: iZIP, and HV
 - iZIP- Best discrimination of radioactive background using charge to phonon ratio
 - In HV mode, charges are drifted across the detector using the bias voltage, amplifying the phonon signal, to lower threshold
 - iZIP HV Si Ge Ge 2 Number of detectors 10 8 Total exposure $(kg \cdot yr)$ 56 4.8 44 Phonon resolution (eV) 50 25 10 Ionization resolution (eV) 100 110

Voltage bias (V)

Very low threshold prototype detector

- Prototype "HVeV" devices (https://arxiv.org/abs/1804.10697) push down sensitivity for even lower masses
- Low mass, low threshold devices sensitive to single electron-hole pairs
- Has a limiting background: leakage current. Source is unclear, may improve underground

Above ground results with HVeV device show clear separation of small numbers of electron-hole pairs, giving competitive sensitivity for electron-interacting dark matter searches.

- Need to test detector behaviour under low background conditions
- Need to test and characterize detectors without producing a cosmogenic background
- Build the Cryogenic Underground TEst Facility

- Can hold up to 6 SuperCDMS detectors
- Well shielded (1.5 m water, ~ 10 cm of low-activity Pb)
- Estimated background: few events/keV/kg/day

Background source	Material	Contributing	Induced detector rate
		isotopes	[evts/keV/kg/d] below 1 keV
External Environment	Cavern walls	²⁰⁸ Tl, ⁴⁰ K, n	1.10
Radon in water	Water	²²² Rn	0.05
Lead shield, external	Low act. lead	U/Th, ²¹⁰ Pb	0.65
Radon in air gap	Rn reduced air	²²² Rn	0.04
Cryostat vacuum can	SS, 316L	U/Th, 60Co	0.58
Cryostat inner shields	Copper, CuC2	U/Th, 60Co	0.10
Brazing	AgSn	²¹⁰ Pb	0.25
Lead shield, internal	Low act. lead	U/Th, ²¹⁰ Pb	0.10
Total			2.87

CUTE Role

- Test SuperCDMS detectors
 - Understand the noise
 - EM interference from the lab, leakage current, detector cross talk, etc.
 - Detector setup optimization
 - Data taking/processing (end-to-end data pipeline testing from detector via electronics, to transfer of data to processing)
 - Calibration
 - IR leakage testing
- If time permits and bg low enough, probe new dark matter parameter space
 - Bg comparable to previous facility but with much lower threshold

		Production Rate	Concentration		
		(atoms/kg/day)	(decays/kg/day)		
Material	Isotope		HV	iZIP	
Ge	$^{3}\mathrm{H}$	80	0.7	1.5	
Si	$^{3}\mathrm{H}$	125	1	2	
Si	$^{32}\mathrm{Si}$	—	80	80	

CUTE Role - Calibration

- Energy scale
 - High Energy:
 - ¹³³Ba (356 keV)
 - Low Energies
 - ⁵⁵Fe (5.9 keV) with Al fluorescence (1.5 keV)
 - In Ge: $^{71}\mbox{Ge}$ (0.16, 1.3, 10.4 keV; activated by a $^{252}\mbox{Cf}$ neutron source
 - Very low energies: individual optical/IR photons (single e-h pairs)
 - Internal LEDs
 - Optical Fiber
- Position dependence (ideas, but no plan defined)
 - Array of LEDs across detector surface
 - Moveable radioactive source
 - Multiple fluorescence sources

 ${}^{\rm 55}{\rm Fe}$ source in use at SuperCDMS test facility at SLAC

Sensor layout of SuperCDMS HV detector

CUTE Status

• Already installed Underground:

CUTE Status

- Can now install:
 - Cryostat
 - Vibration isolating suspension system
 - Gas handling system
 - Electronics and rack
- All parts in hand on site, at partner institutions, or on the way
- Installation to be completed by April

- After necessary testing goals have been achieved in CUTE, there will be opportunities for competitive science results.
- If detectors behave as expected, 1-2 months of Ge or Si-HV could produce competitive DM sensitivity
- Possible to explore HVeV device underground to test if residual background can be reduced
- May test/operate other prototype detectors with potentially interesting science reach

- SuperCDMS searches for dark matter interactions with cryogenic Ge and Si semiconductor detectors
- SuperCDMS needs a low background and low activation environment to test its detectors
- CUTE provides this environment
- New dark matter parameter space could be explored with SuperCDMS detectors in CUTE assuming background and threshold goals are met

South Dakota SM&T

U. British Columbia