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Overview

® SNO+ detector and physics goals

® Machine learning basics
e Applications of machine learning to SNO+

® Antineutrinos

® Reconstruction



The SNO-+ Detector

[

Multipurpose neutrino experiment
2km underground

12m diameter acrylic vessel
~10,000 PMTs

900Mg water / 780Mg scintillator

Physics goals include

® Neutrinoless double beta decay
® Low energy solar neutrinos
® Antineutrinos
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SNO+ Antineutrinos

® Antineutrinos originate from several sources
® (-decay in nuclear reactors (reactor neutrinos)
® (-decay of radioactive isotopes in the Earth (geo-neutrinos)
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N
SNO+ Antineutrinos

® Goal is to detect antineutrino signal in water
® Detected via inverse beta decay
Ve+p— e 4+n
e Coincident signal
® Positron deposits energy, annihilates (prompt event)
® Neutron is captured later by a proton (delayed event)
® Emits 2.2MeV v
® Signals present as rings on the detector
[ J

Antineutrino signals are difficult to detect in water

® Low energy deposited
® Dominated by other backgrounds in the detector
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Machine Learning

e A prediction function, f, takes some input, X, and produces a
meaningful output, Y
® Goal of machine learning is to learn the prediction function
® Known inputs and outputs used to train the model

® Patterns in the data not obvious to us can be recognized in the
learning process
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Traditional (Human-Based) Analysis Approach

Study the
problem

—>

Write rules

Analyze

errors

Launch!

< v >
®




-
Machine Learning Analysis Approach
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Machine Learning

® Two broad categories of machine learning
® Supervised learning
® Provide training data with explicitly labelled inputs and outputs
® Unsupervised learning
® Provide unlabelled data and try to infer patterns from it

¢ Divide supervised learning into two categories based on the target(s)

Classification (binary/multiclass) Regression (continuous)
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Machine Learning for SNO+

® Machine learning can help in SNO-+ data analysis
® Antineutrino Search
® (lassification problem
® |ots of data
® |dentify patterns / detect anomalies
® Reconstruction of event positions in the detector
® Regression problem
® |ots of data

® Primary focus on neural networks
® Found to perform faster and better than other approaches
® Existing efficient implementations of matrix multiplication
® Easy implementation of algorithms that utilize GPUs for training and
inference
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|dentifying
Antineutrino Events



AmBe Calibration Source

® Need a large training set of data for machine learning
® Americium-241 Beryllium-9, “AmBe", calibration source

® Provides two energy calibration measurements
® Mimics the antineutrino signal (7. +p — ¢" + 1)

a+%Be — 2C +n (40%)
a+Be — 2C* +n (60%)
12c* — 12C 4 4 (4.4MeV)

® 4.4MeV 7 is basically instant (prompt event, like the e™)
® n is captured in water some time later (delayed event)

® Emits 2.2MeV ~
® Fitted neutron capture time in water:
202.6 + 3.7us [5], 204.8 = 0.4us [6], 208.2 £ 2.1us [7]
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|
Neural Network Classifier: Approach

® Machine learning allows for the identification of the neutron capture
signal

® Supervised learning problem

® Trained on AmBe Monte Carlo data
® Salted with background data from the detector

® |nputs: PMT positional coordinates and PMT time
® PMT coordinates relative to the median of all hit PMTs in an event
® Total size is 4 - nhits (X — Xm, Y — Ym, Z — Zm, t)

® Qutput: a classification
® Neutron capture or background
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Neural Network Classifier: Results

® Accuracy on test set >90% for identification of both background and
neutron capture

® The test set is completely separated from the training set

® More importantly, predictions are consistent with real AmBe
calibration data from the detector

® Coincident signal is used to test the model

® The time difference between delayed events predicted by the neural
network (neutron candidates) and the event directly before (prompt
event) should produce a specific timing distribution

® Timing distribution fit will produce the neutron capture constant in
water
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Neural Network Classifier: Results

® Time difference between events within a 5000us before/after the

candidate are binned

® Negative time difference (i.e., events after the candidate) are Poisson

distributed similarly to data
® Consists of backgrounds

® Positive time difference (i.e., events before the candidate) are Poisson

distributed with a parameter of neutron capture constant
® Consists of prompt events and backgrounds

Y n
_ J At - \ - J
 ——

Time Window

Time

17



Neural Network Classifier Performance

® Fit sum of two exponentials, exp ([O] mAt) + exp ([2] At)
® p0 and pl are constrained by negative fit and thus fixed
® p3 is the neutron capture constant!
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Neural Network Classifier Performance

® Fit sum of two exponentials, exp ([0] N ﬁAt)

+ exp ([2] —

® p0 and pl are constrained by negative fit and thus fixed

® p3 is the neutron capture constant!
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Reconstruction of Event Position
in the Detector



Position Reconstruction

® Position reconstruction also suitable for machine learning

Want to figure out where in the detector an event occurs

Use relative PMT timing information

e Current approach involves a cascading of likelihood algorithms that
account for complex physics processes

Event
particle directio

Cherenkov cone
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Position Reconstruction

e With neural networks, a computational investment initially allows for
fast inference later

® Existing efficient implementations of matrix multiplication
® Easy implementation of algorithms that take advantage of GPUs
® A trained network is much quicker
® Supervised learning, regression problem
® Train on Monte Carlo electrons
® Uniformly distributed throughout the detector volume
® Test on Monte Carlo and calibration data (tagged sources)
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]
Position Reconstruction: SNO+4
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Position Reconstruction: SNO+4

Histogram of Residuals
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Position Reconstruction: Neural Network
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Position Reconstruction: Neural Network
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Position Reconstruction

Resolution of neural network is slightly worse

Spread of residuals has less outliers
Neural network makes much faster predictions than SNO-+ fitter

® 100x - 1,000x quicker on CPU (Central Processing Unit)
® 10,000x quicker on GPU (Graphics Processing Unit)
® Conservative estimates

Average results together to obtain better reconstruction
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Position Reconstruction: Neural Network and SNO+

Histogram of Residuals
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]
Position Reconstruction: Neural Network and SNO+

Histogram of Residuals
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Conclusion

® Machine learning has proven successful on several analysis tasks
® Many more places where machine learning can be helpful

® Monte Carlo simulations

® Data cleaning and further background identification/reduction

® Results are promising entering the scintillator phase of the experiment
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Thank You!
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