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Overview

• SNO+ detector and physics goals

• Machine learning basics

• Applications of machine learning to SNO+

• Antineutrinos

• Reconstruction
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The SNO+ Detector

• Multipurpose neutrino experiment

• 2km underground

• 12m diameter acrylic vessel

• ⇠10,000 PMTs

• 900Mg water / 780Mg scintillator

• Physics goals include

• Neutrinoless double beta decay

• Low energy solar neutrinos

• Antineutrinos
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SNO+ Antineutrinos

• Antineutrinos originate from several sources
• �-decay in nuclear reactors (reactor neutrinos)
• �-decay of radioactive isotopes in the Earth (geo-neutrinos)

n ��! p+ e� + ⌫̄e

[1]
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SNO+ Antineutrinos

• Goal is to detect antineutrino signal in water

• Detected via inverse beta decay

⌫̄e + p ��! e+ + n

• Coincident signal
• Positron deposits energy, annihilates (prompt event)
• Neutron is captured later by a proton (delayed event)

• Emits 2.2MeV �

• Signals present as rings on the detector

• Antineutrino signals are di�cult to detect in water
• Low energy deposited
• Dominated by other backgrounds in the detector

5



6



Machine Learning

• A prediction function, f , takes some input, X , and produces a
meaningful output, Y

• Goal of machine learning is to learn the prediction function
• Known inputs and outputs used to train the model

• Patterns in the data not obvious to us can be recognized in the
learning process
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Traditional (Human-Based) Analysis Approach

[2]
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Machine Learning Analysis Approach

[2]
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Machine Learning

• Two broad categories of machine learning
• Supervised learning

• Provide training data with explicitly labelled inputs and outputs
• Unsupervised learning

• Provide unlabelled data and try to infer patterns from it

• Divide supervised learning into two categories based on the target(s)

Classification (binary/multiclass) Regression (continuous)

[3] [4]
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Machine Learning for SNO+

• Machine learning can help in SNO+ data analysis
• Antineutrino Search

•
Classification problem

• Lots of data
• Identify patterns / detect anomalies

• Reconstruction of event positions in the detector
•

Regression problem
• Lots of data

• Primary focus on neural networks
• Found to perform faster and better than other approaches
• Existing e�cient implementations of matrix multiplication
• Easy implementation of algorithms that utilize GPUs for training and

inference
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Identifying

Antineutrino Events
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AmBe Calibration Source

• Need a large training set of data for machine learning
• Americium-241 Beryllium-9, “AmBe”, calibration source

• Provides two energy calibration measurements
• Mimics the antineutrino signal (⌫̄e + p ��! e+ + n)

↵+ 9Be ��! 12C + n (40%)

↵+ 9Be ��! 12C⇤ + n (60%)
12C⇤ ��! 12C+ � (4.4MeV)

• 4.4MeV � is basically instant (prompt event, like the e+)
• n is captured in water some time later (delayed event)

• Emits 2.2MeV �
• Fitted neutron capture time in water:

202.6± 3.7µs [5], 204.8± 0.4µs [6], 208.2± 2.1µs [7]
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Neural Network Classifier: Approach

• Machine learning allows for the identification of the neutron capture
signal

• Supervised learning problem
• Trained on AmBe Monte Carlo data

• Salted with background data from the detector

• Inputs: PMT positional coordinates and PMT time
• PMT coordinates relative to the median of all hit PMTs in an event
• Total size is 4 · nhits (x � xm, y � ym, z � zm, t)

• Output: a classification
• Neutron capture or background
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Neural Network Classifier: Results

• Accuracy on test set >90% for identification of both background and
neutron capture

• The test set is completely separated from the training set

• More importantly, predictions are consistent with real AmBe
calibration data from the detector

• Coincident signal is used to test the model
• The time di↵erence between delayed events predicted by the neural

network (neutron candidates) and the event directly before (prompt
event) should produce a specific timing distribution

• Timing distribution fit will produce the neutron capture constant in
water
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Neural Network Classifier: Results

• Time di↵erence between events within a 5000µs before/after the
candidate are binned

• Negative time di↵erence (i.e., events after the candidate) are Poisson
distributed similarly to data

• Consists of backgrounds
• Positive time di↵erence (i.e., events before the candidate) are Poisson
distributed with a parameter of neutron capture constant

• Consists of prompt events and backgrounds
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Neural Network Classifier Performance

• Fit sum of two exponentials, exp
⇣
[0]� 1

[1]�t
⌘
+ exp

⇣
[2]� 1

[3]�t
⌘

• p0 and p1 are constrained by negative fit and thus fixed
• p3 is the neutron capture constant!
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Reconstruction of Event Position

in the Detector
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Position Reconstruction

• Position reconstruction also suitable for machine learning
• Want to figure out where in the detector an event occurs
• Use relative PMT timing information
• Current approach involves a cascading of likelihood algorithms that
account for complex physics processes

[8] [8]
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Position Reconstruction

• With neural networks, a computational investment initially allows for
fast inference later

• Existing e�cient implementations of matrix multiplication
• Easy implementation of algorithms that take advantage of GPUs
• A trained network is much quicker

• Supervised learning, regression problem
• Train on Monte Carlo electrons

• Uniformly distributed throughout the detector volume

• Test on Monte Carlo and calibration data (tagged sources)
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Position Reconstruction: SNO+
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Position Reconstruction: SNO+

µdata = �0.261

�data = 399.312

FWHM = 586.344

23



Position Reconstruction: Neural Network

µdata = �9.796

�data = 350.687

FWHM = 675.440
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Position Reconstruction: Neural Network
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Position Reconstruction

• Resolution of neural network is slightly worse

• Spread of residuals has less outliers
• Neural network makes much faster predictions than SNO+ fitter

• 100x - 1,000x quicker on CPU (Central Processing Unit)
• 10,000x quicker on GPU (Graphics Processing Unit)
• Conservative estimates

• Average results together to obtain better reconstruction
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Position Reconstruction: Neural Network and SNO+

µdata = �5.028

�data = 326.874

FWHM = 580.510

26



Position Reconstruction: Neural Network and SNO+

µdata = �5.028

�data = 326.874

FWHM = 580.510
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Conclusion

• Machine learning has proven successful on several analysis tasks

• Many more places where machine learning can be helpful

• Monte Carlo simulations

• Data cleaning and further background identification/reduction

• Results are promising entering the scintillator phase of the experiment
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Thank You!
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