Helping to Improve the Analysis of SNO+ Data with Machine Learning

Mark Anderson on behalf of the SNO+ collaboration

WNPPC · February 17th, 2019

Overview

- SNO+ detector and physics goals
- Machine learning basics
- Applications of machine learning to SNO+
 - Antineutrinos
 - Reconstruction

The SNO+ Detector

- Multipurpose neutrino experiment
- 2km underground
- 12m diameter acrylic vessel
- ► ~10,000 PMTs
- 900Mg water / 780Mg scintillator
- Physics goals include
 - Neutrinoless double beta decay
 - Low energy solar neutrinos
 - Antineutrinos

SNO+ Antineutrinos

- Antineutrinos originate from several sources
 - β-decay in nuclear reactors (reactor neutrinos)
 - β-decay of radioactive isotopes in the Earth (geo-neutrinos)

$$n \longrightarrow p + e^- + \bar{\nu}_e$$

SNO+ Antineutrinos

- Goal is to detect antineutrino signal in water
- Detected via inverse beta decay

$$\bar{\nu}_e + p \longrightarrow e^+ + n$$

- Coincident signal
 - Positron deposits energy, annihilates (prompt event)
 - Neutron is captured later by a proton (*delayed* event)
 - Emits 2.2MeV γ
 - Signals present as rings on the detector
- Antineutrino signals are difficult to detect in water
 - Low energy deposited
 - Dominated by other backgrounds in the detector

Machine Learning

- A prediction function, f, takes some input, X, and produces a meaningful output, Y
- Goal of machine learning is to *learn* the prediction function
 - Known inputs and outputs used to train the model
- Patterns in the data not obvious to us can be recognized in the learning process

Traditional (Human-Based) Analysis Approach

Machine Learning Analysis Approach

Machine Learning

- Two broad categories of machine learning
 - Supervised learning
 - · Provide training data with explicitly labelled inputs and outputs
 - Unsupervised learning
 - · Provide unlabelled data and try to infer patterns from it
- Divide supervised learning into two categories based on the target(s)

Classification (binary/multiclass)

00 2222222222222222 33333 2 3 3 3 .3 3 4 5555 SS 5555 66666666 **999999999999999999** Regression (continuous)

Machine Learning for SNO+

- Machine learning can help in SNO+ data analysis
 - Antineutrino Search
 - Classification problem
 - Lots of data
 - Identify patterns / detect anomalies
 - · Reconstruction of event positions in the detector
 - Regression problem
 - Lots of data
- Primary focus on neural networks
 - Found to perform faster and better than other approaches
 - Existing efficient implementations of matrix multiplication
 - Easy implementation of algorithms that utilize GPUs for training and inference

Identifying Antineutrino Events

AmBe Calibration Source

- Need a large training set of data for machine learning
- Americium-241 Beryllium-9, "AmBe", calibration source
 - Provides two energy calibration measurements
 - Mimics the antineutrino signal $(\bar{\nu}_e + p \longrightarrow e^+ + n)$

$$\begin{array}{c} \alpha + {}^{9}\text{Be} \longrightarrow {}^{12}\text{C} + \text{n} & (40\%) \\ \alpha + {}^{9}\text{Be} \longrightarrow {}^{12}\text{C}^{*} + \text{n} & (60\%) \\ & {}^{12}\text{C}^{*} \longrightarrow {}^{12}\text{C} + \gamma & (4.4\text{MeV}) \end{array}$$

- 4.4MeV γ is basically instant (*prompt* event, like the e⁺)
- n is captured in water some time later (*delayed* event)
 - Emits 2.2MeV γ
 - Fitted neutron capture time in water: 202.6 \pm 3.7 μ s [5], 204.8 \pm 0.4 μ s [6], 208.2 \pm 2.1 μ s [7]

Neural Network Classifier: Approach

- Machine learning allows for the identification of the neutron capture signal
 - Supervised learning problem
 - Trained on AmBe Monte Carlo data
 - Salted with background data from the detector
 - Inputs: PMT positional coordinates and PMT time
 - PMT coordinates relative to the median of all hit PMTs in an event
 - Total size is $4 \cdot \text{nhits} (x x_m, y y_m, z z_m, t)$
 - Output: a classification
 - Neutron capture or background

Neural Network Classifier: Results

- Accuracy on test set >90% for identification of both background and neutron capture
 - The test set is completely separated from the training set
- More importantly, predictions are consistent with real AmBe calibration data from the detector
 - Coincident signal is used to test the model
 - The time difference between delayed events predicted by the neural network (neutron candidates) and the event directly before (prompt event) should produce a specific timing distribution
 - Timing distribution fit will produce the neutron capture constant in water

Neural Network Classifier: Results

- Time difference between events within a 5000 μ s before/after the candidate are binned
- Negative time difference (i.e., events *after* the candidate) are Poisson distributed similarly to data
 - Consists of backgrounds
- Positive time difference (i.e., events *before* the candidate) are Poisson distributed with a parameter of neutron capture constant
 - Consists of prompt events and backgrounds

Neural Network Classifier Performance

- Fit sum of two exponentials, $\exp\left(\left[0\right] \frac{1}{[1]}\Delta t\right) + \exp\left(\left[2\right] \frac{1}{[3]}\Delta t\right)$
 - p0 and p1 are constrained by negative fit and thus fixed
 - p3 is the neutron capture constant!

Neural Network Classifier Performance

- Fit sum of two exponentials, $\exp\left(\left[0\right] \frac{1}{[1]}\Delta t\right) + \exp\left(\left[2\right] \frac{1}{[3]}\Delta t\right)$
 - p0 and p1 are constrained by negative fit and thus fixed
 - *p*3 is the neutron capture constant!

Reconstruction of Event Position in the Detector

Position Reconstruction

- Position reconstruction also suitable for machine learning
- Want to figure out where in the detector an event occurs
- Use relative PMT timing information
- Current approach involves a cascading of likelihood algorithms that account for complex physics processes

Position Reconstruction

- With neural networks, a computational investment initially allows for fast inference later
 - Existing efficient implementations of matrix multiplication
 - Easy implementation of algorithms that take advantage of GPUs
 - A trained network is much quicker
- Supervised learning, regression problem
 - Train on Monte Carlo electrons
 - Uniformly distributed throughout the detector volume
 - Test on Monte Carlo and calibration data (tagged sources)

Position Reconstruction: SNO+

Position Reconstruction: SNO+

$$\mu_{data} = -0.261$$

$$\sigma_{data} = 399.312$$

FWHM = 586.344

Position Reconstruction: Neural Network

$$\mu_{data} = -9.796$$
 $\sigma_{data} = 350.687$
FWHM = 675.440

Position Reconstruction: Neural Network

 $\mu_{data} = -9.796$ $\sigma_{data} = 350.687$ FWHM = 675.440

Position Reconstruction

- Resolution of neural network is slightly worse
- Spread of residuals has less outliers
- Neural network makes much faster predictions than SNO+ fitter
 - 100x 1,000x quicker on CPU (Central Processing Unit)
 - 10,000x quicker on GPU (Graphics Processing Unit)
 - Conservative estimates
- Average results together to obtain better reconstruction

Position Reconstruction: Neural Network and SNO+

$$\mu_{data} = -5.028$$

$$\sigma_{data} = 326.874$$

FWHM = 580.510

Position Reconstruction: Neural Network and SNO+

 $\mu_{data} = -5.028$ $\sigma_{data} = 326.874$ FWHM = 580.510

Conclusion

- Machine learning has proven successful on several analysis tasks
- Many more places where machine learning can be helpful
 - Monte Carlo simulations
 - Data cleaning and further background identification/reduction
- Results are promising entering the scintillator phase of the experiment

Thank You!

References

- "Beta Decay." upload.wikimedia.org/wikipedia/commons/a/aa/Beta-minus_Decay.svg. Accessed: 2019-03-11.
- [2] A. Géron, Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems.
 O'Reilly Media, Inc., 2017.
- [3] "Sample of MNIST Dataset." commons.wikimedia.org/wiki/File:MnistExamples.png. Accessed: 2019-03-11.
- [4] "Chart Line." pixabay.com/chart-line-line-chart-diagram-trend-148256/. Accessed: 2019-03-11.
- [5] Y. Zhang, K. Abe, Y. Haga, Y. Hayato, M. Ikeda, K. Iyogi, J. Kameda, Y. Kishimoto, M. Miura, S. Moriyama, et al., "First measurement of radioactive isotope production through cosmic-ray muon spallation in super-kamiokande iv," *Physical Review D*, vol. 93, no. 1, p. 012004, 2016.
- [6] D. Cokinos and E. Melkonian, "Measurement of the 2200 m/sec neutron-proton capture cross section," *Physical Review C*, vol. 15, no. 5, p. 1636, 1977.
- [7] Y. Liu, S. Andringa, D. Auty, F. Barão, R. Bayes, E. Caden, C. Grant, J. Grove, B. Krar, A. LaTorre, et al., "Neutron detection in the sno+ water phase," arXiv preprint arXiv:1808.07020, 2018.
- [8] J. Hu. From WNPPC 2017 Presentation.